5-cycles and the Petersen graph
نویسندگان
چکیده
We show that if G is a connected bridgeless cubic graph whose every 2-factor is comprised of cycles of length five then G is the Petersen graph. ”The Petersen graph is an obstruction to many properties in graph theory, and often is, or conjectured to be, the only obstruction”. This phrase is taken from one of the series of papers by Robertson, Sanders, Seymour and Thomas that is devoted to the proof of prominent Tutte conjecturea conjecture which states that if the Petersen graph is not a minor of a bridgeless cubic graph G then G is 3-edge-colorable, and which in its turn is a particular case of a much more general conjecture of Tutte stating that every bridgeless graph G has a nowhere zero 4-flow unless the Petersen graph is not a minor of G. Another result that stresses the exceptional role of the Petersen graph is proved by Alspach et al. in [1]. The following striking conjecture of Jaeger states that everything related to the colorings of bridgeless cubic graphs can be reduced to that of the Petersen graph, more specifically, Conjecture 1 Petersen coloring conjecture of Jaeger [4]: the edges of every bridgeless cubic graph G can be mapped into the edges of the Petersen graph in such a way that any three mutually incident edges of G are mapped to three mutually incident edges of the Petersen graph. ∗The author is supported by a grant of Armenian National Science and Education Fund
منابع مشابه
SIGNED GENERALIZED PETERSEN GRAPH AND ITS CHARACTERISTIC POLYNOMIAL
Let G^s be a signed graph, where G = (V;E) is the underlying simple graph and s : E(G) to {+, -} is the sign function on E(G). In this paper, we obtain k-th signed spectral moment and k-th signed Laplacian spectral moment of Gs together with coefficients of their signed characteristic polynomial and signed Laplacian characteristic polynomial are calculated.
متن کاملGraceful labelings of the generalized Petersen graphs
A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...
متن کاملA note on Fouquet-Vanherpe’s question and Fulkerson conjecture
The excessive index of a bridgeless cubic graph $G$ is the least integer $k$, such that $G$ can be covered by $k$ perfect matchings. An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless cubic graph has excessive index at most five. Clearly, Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5, so Fouquet and Vanherpe as...
متن کاملGrinberg's Criterion Applied to Some Non-Planar Graphs
Robertson ([5]) and independently, Bondy ([1]) proved that the generalized Petersen graph P (n, 2) is non-hamiltonian if n ≡ 5 (mod 6), while Thomason [7] proved that it has precisely 3 hamiltonian cycles if n ≡ 3 (mod 6). The hamiltonian cycles in the remaining generalized Petersen graphs were enumerated by Schwenk [6]. In this note we give a short unified proof of these results using Grinberg...
متن کاملPacking chromatic number, (1, 1, 2, 2)-colorings, and characterizing the Petersen graph
The packing chromatic number χρ(G) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets Π1, . . . ,Πk, where Πi, i ∈ [k], is an i-packing. The following conjecture is posed and studied: if G is a subcubic graph, then χρ(S(G)) ≤ 5, where S(G) is the subdivision of G. The conjecture is proved for all generalized prisms of cycles. To get this result it ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0801.3714 شماره
صفحات -
تاریخ انتشار 2008